文理学部シラバスTOP > 大学院博士前期課程 > 社会学専攻 > データサイエンス基礎演習
日本大学ロゴ

データサイエンス基礎演習

このページを印刷する

令和2年度以降入学者 データサイエンス基礎演習
教員名 菅野剛
単位数    1 課程     開講区分 文理学部
科目群 社会学専攻
学期 後期 履修区分 選択必修
授業形態 遠隔授業(オンデマンド型)
授業の形態 Google Chrome ブラウザ を使い Google Classroom で行います (クラスコード は Blackboard に掲載)。
必要な場合は Google Meet、 Google Chat、 Hubs などによる同時双方向で対応します。
授業概要 Programming and Data Science
授業のねらい・到達目標 Beware of confirmation bias and train yourself to make decisions as logically as possible.
Familiarize yourself with English, statistics, and programming, which are the lingua franca of the world.
授業の形式 講義、演習
授業の方法 Prior learning is required by reading the textbook, studying online, and performing programming and data analysis.
Students learn, practice, and get feedback.
An NU-MailG account and enrollment in Google Classroom are required.
授業計画
1 Google Classroom, joining a class, Google Colaboratory, Python, Introduction to Programming and Data Science.
【事前学習】Pre-course work: Introduction to Programming and Data Science (2時間)
【事後学習】Homework: Introduction to Programming and Data Science (2時間)
2 Optimization and the Knapsack Problem. Assessment and feedback.
【事前学習】Pre-course work: Optimization and the Knapsack Problem (2時間)
【事後学習】Homework: Optimization and the Knapsack Problem (2時間)
3 Decision Trees and Dynamic Programming. Assessment and feedback.
【事前学習】Pre-course work: Decision Trees and Dynamic Programming (2時間)
【事後学習】Homework: Decision Trees and Dynamic Programming (2時間)
4 Graph Problems. Assessment and feedback.
【事前学習】Pre-course work: Graph Problems (2時間)
【事後学習】Homework: Graph Problems (2時間)
5 Plotting. Assessment and feedback.
【事前学習】Pre-course work: Plotting (2時間)
【事後学習】Homework: Plotting (2時間)
6 Stochastic Thinking. Assessment and feedback.
【事前学習】Pre-course work: Stochastic Thinking (2時間)
【事後学習】Homework: Stochastic Thinking (2時間)
7 Random Walks. Assessment and feedback.
【事前学習】Pre-course work: Random Walks (2時間)
【事後学習】Homework: Random Walks (2時間)
8 Inferential Statistics. Assessment and feedback.
【事前学習】Pre-course work: Inferential Statistics (2時間)
【事後学習】Homework: Inferential Statistics (2時間)
9 Monte Carlo Simulations. Assessment and feedback.
【事前学習】Pre-course work: Monte Carlo Simulations (2時間)
【事後学習】Homework: Monte Carlo Simulations (2時間)
10 Sampling and Standard Error. Assessment and feedback.
【事前学習】Pre-course work: Sampling and Standard Error (2時間)
【事後学習】Sampling and Standard Error (2時間)
11 Experimental Data Part 1. Assessment and feedback.
【事前学習】Pre-course work: Experimental Data Part 1 (2時間)
【事後学習】Homework: Experimental Data Part 1 (2時間)
12 Experimental Data Part 2. Assessment and feedback.
【事前学習】Pre-course work: Experimental Data Part 2 (2時間)
【事後学習】Homework: Experimental Data Part 2 (2時間)
13 Machine Learning. Assessment and feedback.
【事前学習】Pre-course work: Machine Learning (2時間)
【事後学習】Homework: Machine Learning (2時間)
14 Statistical Fallacies. Assessment and feedback.
【事前学習】Pre-course work: Statistical Fallacies (2時間)
【事後学習】Homework: Statistical Fallacies (2時間)
15 Programming and Data Science. Assessment and feedback.
【事前学習】Pre-course work: Programming and Data Science (2時間)
【事後学習】Homework: Programming and Data Science (2時間)
その他
教科書 適宜紹介する。
参考書 John V. Guttag, Introduction to Computation and Programming Using Python: With Application to Understanding Data., The MIT Press, 2016, 2 edition
P.G.ホーエル 『初等統計学』 培風館 1981年 第4版
T.H.ウォナコット・R.J.ウォナコット 『統計学序説』 培風館 1978年
P.G.ホーエル 『入門数理統計学』 培風館 1978年
長野宏宣・中川晋一・蒲池孝一・櫻田武嗣・坂口正芳・八尾武憲・衣笠愛子・穴山朝子 『IT技術者の長寿と健康のために』 近代科学社 2016年
盛山和夫 『社会調査法入門』 有斐閣 2004年
今井耕介 『社会科学のためのデータ分析入門(上)』 岩波書店 2018年
成績評価の方法及び基準 レポート:Programming homework(30%)、授業内テスト:Online tests(20%)、授業参画度:Reaction or response papers(50%)
Self-directedness and Intellectual flexibility.
オフィスアワー Ask any questions at any time on Google Classroom. Appointment times will generally be available after the class.

このページのトップ