文理学部シラバスTOP > 大学院博士前期課程 > 社会学専攻 > 社会学実証基礎演習3
日本大学ロゴ

社会学実証基礎演習3

このページを印刷する

科目名 社会学実証基礎演習3
教員名 菅野剛
単位数    1 課程 前期課程 開講区分 文理学部
科目群 社会学専攻
学期 後期 履修区分 選択必修
授業概要 - Programming and Data Science
- This course might NOT be qualified as "I: Graduate Seminar in Multivariate Analyses", the standard curriculum at the Japanese Association for Social Research (JASR), due to inevitable fundamental changes in course content and lecture topics in 2019.
授業のねらい・到達目標 - We are facing the Fourth Industrial Revolution (4IR). The times have changed outside the class. Worth learning is the STEAM not in the class.
- Learn Data Science the hard way. Learn Data Science by oneself. You will need several other courses on social survey, statistics, data analysis, programming, machine learning, and AI elsewhere.
- Introduction to research with data science: statistics, programming, and data analysis.

- Report of the Central Council for Education
http://www.mext.go.jp/b_menu/shingi/chukyo/chukyo4/houkoku/1412988.htm

- Coucil for Science, Technology and Innovation
https://www.kantei.go.jp/jp/singi/tougou-innovation/dai2/siryo1.pdf
https://www.kantei.go.jp/jp/singi/tougou-innovation/dai4/siryo1-1.pdf
授業の方法 https://sites.google.com/a/nihon-u.ac.jp/sugano-lab/home/google-classroom

- Preparation for class by reading textbooks and by learning online resources beforehand is required.
- Discuss about the topics and applied data analysis during the class.
- Programming and analyses are provided as pre-course work and homework.
- NU-MailG accounts and joining to Google Classroom are required.
- BYOD: Bring your own device.
- We do not provide support for the Windows operating system due to shortage of human resource.
- Courses are to be closed upon no registration.
授業計画
1 【授業内容】 Classroom: Notification of NU-AppsG accounts, password reminder settings, Password settings, explanation of Google Classroom, joining a class, Google Colaboratory, Python, Introduction to Programming and Data Science.
【事前学習】 Pre-course work: Introduction to Programming and Data Science
【事後学習】 Homework: Introduction to Programming and Data Science
2 【授業内容】 Optimization and the Knapsack Problem, Google Colaboratory, Python
【事前学習】 Pre-course work: Optimization and the Knapsack Problem
【事後学習】 Homework: Optimization and the Knapsack Problem
3 【授業内容】 Decision Trees and Dynamic Programming, Google Colaboratory, Python
【事前学習】 Pre-course work: Decision Trees and Dynamic Programming
【事後学習】 Homework: Decision Trees and Dynamic Programming
4 【授業内容】 Graph Problems, Google Colaboratory, Python
【事前学習】 Pre-course: Graph Problems
【事後学習】 Homework: Graph Problems
5 【授業内容】 Plotting, Google Colaboratory, Python
【事前学習】 Pre-course: Plotting
【事後学習】 Homework: Plotting
6 【授業内容】 Stochastic Thinking, Google Colaboratory, Python
【事前学習】 Pre-course: Stochastic Thinking
【事後学習】 Homework: Stochastic Thinking
7 【授業内容】 Random Walks, Google Colaboratory, Python
【事前学習】 Pre-course: Random Walks
【事後学習】 Homework: Random Walks
8 【授業内容】 Inferential Statistics, Google Colaboratory, Python
【事前学習】 Pre-course: Inferential Statistics
【事後学習】 Homework: Inferential Statistics
9 【授業内容】 Monte Carlo Simulations, Google Colaboratory, Python
【事前学習】 Pre-course: Monte Carlo Simulations
【事後学習】 Homework: Monte Carlo Simulations
10 【授業内容】 Sampling and Standard Error, Google Colaboratory, Python
【事前学習】 Pre-course: Sampling and Standard Error
【事後学習】 Homework: Sampling and Standard Error
11 【授業内容】 Experimental Data Part 1, Google Colaboratory, Python
【事前学習】 Pre-course: Experimental Data Part 1
【事後学習】 Homework: Experimental Data Part 1
12 【授業内容】 Experimental Data Part 2, Google Colaboratory, Python
【事前学習】 Pre-course: Experimental Data Part 2
【事後学習】 Homework: Experimental Data Part 2
13 【授業内容】 Machine Learning, Google Colaboratory, Python
【事前学習】 Pre-course: Machine Learning
【事後学習】 Homework: Machine Learning
14 【授業内容】 Statistical Fallacies, Google Colaboratory, Python
【事前学習】 Pre-course: Statistical Fallacies
【事後学習】 Homework: Statistical Fallacies
15 【授業内容】 Programming and Data Science, Google Colaboratory, Python
【事前学習】 Pre-course: Programming and Data Science
【事後学習】 Homework: Programming and Data Science
その他
教科書 使用しない
参考書 John V. Guttag, Introduction to Computation and Programming Using Python: With Application to Understanding Data., The MIT Press, 2016, 2 edition
ジョン・V. グッターグ (著), 久保 幹雄 (翻訳) 『世界標準MIT教科書 Python言語によるプログラミングイントロダクション第2版: データサイエンスとアプリケーション』 近代科学社 2017年
- Textbooks are optional.
成績評価の方法及び基準 授業参画度(100%)
- Self-directedness and Intellectual flexibility.
オフィスアワー - Appointment times will generally be available after the class. Ask any questions at any time on Google Classroom.

このページのトップ